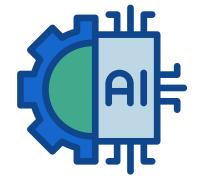


ARTIFICIAL INTELLIGENCE (AI)



DEFINITION

THE ABILITY OF A MACHINE
TO DISPLAY HUMAN-LIKE
CAPABILITIES SUCH AS
REASONING, LEARNING,
PLANNING & CREATIVITY

4 AI USE CASES

AI FOR NETWORK ROLL-OUT AND OPERATION

AI FOR PRODUCTS & SERVICES

BACK-OFFICE AI FRONT-OFFICE AI

TELECOMS & AI

AI TRANSFORMS TELCOS BY OPTIMIZING NETWORK
OPERATIONS, ENHANCING CUSTOMER SERVICE, AND
DRIVING INNOVATION THROUGH ADVANCED DATA ANALYSIS
AND AUTOMATED PROCESSES

SUSTAINABILITY THROUGH AI

ENERGY AND RESOURCE OPTIMIZATION (incl. emissions reduction)

STREAMLINED OPERATIONS

ENABLING OF SUSTAINABLE SOLUTIONS

ECONOMIC & SOCIAL IMPACTS

AUTOMATION-REDUCED HEALTH AND SAFETY HAZARDS

STREAMLINED ADMINISTRATIVE PROCESSES

INTERNET OF **THINGS (IoT)**

DEFINITION

PHYSICAL OBJECTS EMBEDDED WITH SENSORS AND ACTUATORS THAT **COMMUNICATE THROUGH WIRED OR WIRELESS NETWORKS** (E.G. SMART HOME SYSTEM)

IOT: IMMENSE MARKET

TELECOMS & IoT

IoT INVOLVES PHYSICAL OBJECTS EMBEDDED WITH SENSORS AND **ACTUATORS** THAT COMMUNICATE THROUGH WIRED OR WIRELESS NETWORKS. TELECOMS ENABLE IOT AND CAN LEVERAGE IT TO MANAGE MULTIPLE NETWORK DEVICES EFFECTIVELY.

SUSTAINABILITY THROUGH IOT

ENABLING OF SUSTAINABLE SOLUTIONS

COST REDUCTION

OPTIMISED/ REDUCED ENERGY CONSUMPTION

ENHANCED OPERATIONAL EFFICIENCY

HEALTH AND SAFETY IMPROVEMENTS

5G NETWORKS

FIFTH-GENERATION MOBILE NETWORK, OR 5G, IS THE LATEST ITERATION OF CELLULAR TECHNOLOGY.

IT IS CONSIDERED A **PIVOTAL TECHNOLOGY FOR INNOVATION** AND DIGITAL TRANSFORMATION BY THE EUROPEAN COMMISSION

5G VS 4G

LOWER LATENCY

SIGNIFICANTLY FASTER

ENHANCED CONNECTIVITY

UP TO 100x MORE DEVICES SUPPORTED

TELECOMS & 5G

5G TECHNOLOGY OFFERS ENHANCED BANDWIDTH AND CONNECTIVITY TO ENABLE INNOVATIONS SUCH AS SMART CITIES, TELEHEALTH, AUTONOMOUS VEHICLES, AMONG OTHERS.

SUSTAINABILITY THROUGH 5G

ECONOMIC & SOCIAL IMPACTS

ENABLING OF SUSTAINABLE TECHNOLOGIES

UPSKILLING OF TELECOM WORKERS

MONITORING

POSSIBILITIES

EXTENDED REALITY (XR)

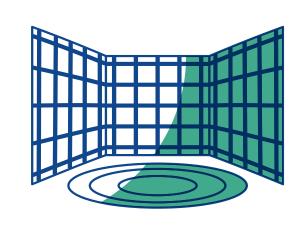
VIRTUAL REALITY, AUGMENTED

REALITY, MIXED REALITY, AS WELL OR
ANY OTHER POTENTIAL DIGITAL
REALITY ON THE REALITY-VIRTUALITY
CONTINUUM.

THEY BLEND DIGITAL CONTENT WITH THE REAL WORLD, CREATING IMMERSIVE EXPERIENCES.

REALITY-VIRTUALITY CONTINUUM

AUGMENTED REALITY

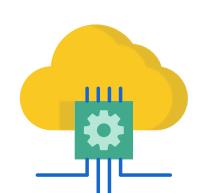


AUGMENTED VIRTUALITY

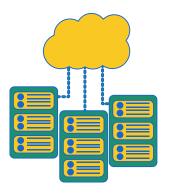
TELECOMS & EXTENDED REALITY

EXTENDED REALITY TECHNOLOGIES ENABLE TELCOS TO DELIVER IMMERSIVE EXPERIENCES, STREAMLINE OPERATIONS, AND INNOVATE IN NETWORK DESIGN AND CUSTOMER SERVICE, THEREBY DRIVING DIGITAL TRANSFORMATION.

CLOUD COMPUTING



A TECHNOLOGY THAT **PROVIDES**INTERNE**T-BASED ACCESS TO STORAGE, PROCESSING, AND APPLICATIONS,**OFFERING A COST-EFFECTIVE, SCALABLE
WAY TO USE COMPUTING RESOURCES
WITHOUT OWNING HARDWARE OR
SOFTWARE.


CLOUD COMPUTING: APPLICATIONS

CLOUD-BASED CUSTOMER RELATIONS

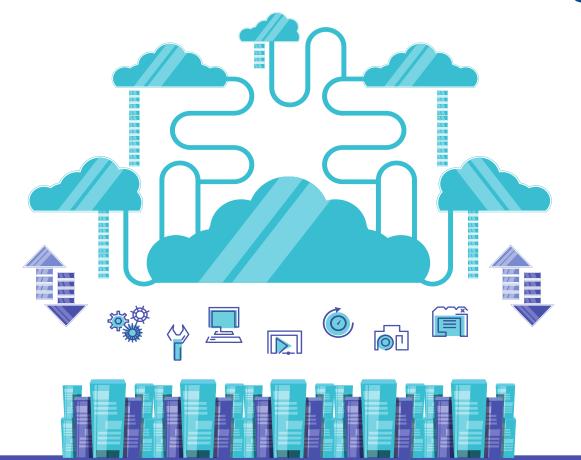
CLOUD-BASED
DATA ANALYTICS

CLOUD-BASED SECURITY

TELECOMS & CLOUD COMPUTING

CLOUD COMPUTING REVOLUTIONISES TELECOMS BY ENHANCING NETWORK FUNCTIONALITY, CUSTOMER RELATIONS, DATA ANALYTICS, AND SECURITY, OFFERING SCALABILITY, COST EFFICIENCY, AND INNOVATIVE SERVICE DELIVERY.

SUSTAINABILITY THROUGH CLOUD

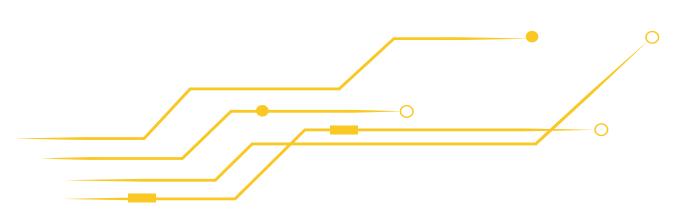

HELPS ACHIEVE DECARBONIZATION GOALS

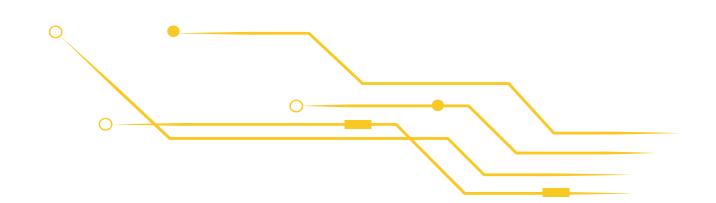
'GREEN CLOUD' ENERGY EFFICIENCY

DATA CENTRES OPTIMIZATION

ECONOMIC & SOCIAL IMPACTS

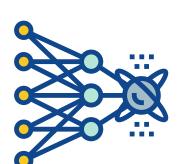
TRANSFORMATION OF SKILL PROFILES

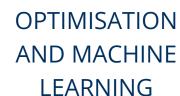



AUTOMATION OF ROUTINE TASKS

OPPORTUNITIES FOR REMOTE WORK

QUANTUM TECHNOLOGY





QUANTUM TECHNOLOGY HARNESSES
THE PRINCIPLES OF QUANTUM
MECHANICS TO CREATE ENHANCED
NEXT GENERATION TECHNOLOGY
SUCH AS COMPUTERS AND SENSORS,
CAPABLE OF FUNCTIONING MORE
EFFICIENTLY THAN TRADITIONAL
TECHNOLOGIES.

QUANTUM TECH: APPLICATIONS

NETWORK &
INFRASTRUCTURE
SECURITY

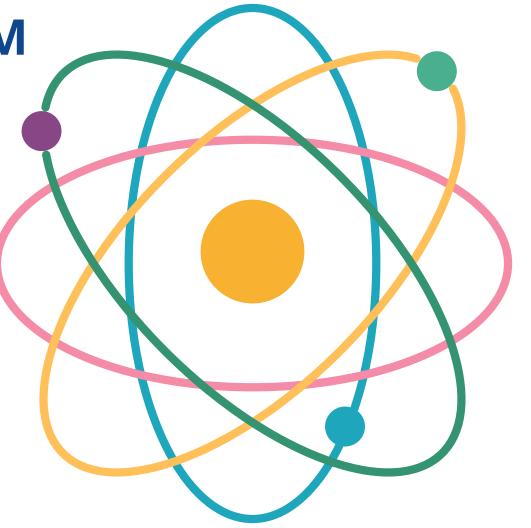
DATA SECURITY & ENCRYPTION SERVICES

SENSING OF FIELDS FOR MEDICAL IMAGING

TELECOMS & QUANTUM TECHNOLOGY

QUANTUM TECHNOLOGY OFFERS GREAT POTENTIAL FOR TELCOS, ENHANCING NETWORK EFFICIENCY, ENABLING ADVANCED DATA ANALYSIS AND AI SOLUTIONS, AND SIGNIFICANTLY IMPROVING CYBERSECURITY THROUGH QUANTUM ENCRYPTION METHODS.

SUSTAINABILITY THROUGH QUANTUM


ULTRA-SECURE DATA TRANSMISSION

NETWORK ENERGY OPTIMISATION USING QUANTUM COMPUTING

NETWORK RESOURCE OPTIMISATION USING QUANTUM COMPUTING

ECONOMIC & SOCIAL IMPACTS

TRANSFORMATION OF SKILL PROFILES

QUANTUM ENGINEERING SKILLS REQUIRED

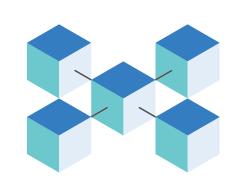
NEW SECURITY THREATS TO CRIPTOGRAPHY

BLOCKCHAIN

BLOCKCHAIN IS A DISTRIBUTED LEDGER TECHNOLOGY THAT SECURELY RECORDS AND VERIFIES TRANSACTIONS ACROSS A NETWORK OF COMPUTERS.

BLOCKCHAIN: APPLICATIONS

SMART CONTRACTS


5G NETWORK ENHANCEMENT

TELECOMS & BLOCKCHAIN

BLOCKCHAIN OFFERS TRANSFORMATIVE APPLICATIONS FOR TELECOMS, ENHANCING DATA SECURITY, FRAUD PREVENTION, AND THE EFFICIENCY OF IOT CONNECTIVITY THROUGH ITS DECENTRALIZED AND TAMPER-PROOF LEDGER SYSTEM

SUSTAINABILITY THROUGH BLOCKCHAIN

INCREASED SUPPLY CHAIN EFFICIENCY

BLOCKCHAIN-BASED PROXIMITY ENERGY GRIDS

INCREASED TRANSPARENCY OF CARBON CREDITS

ECONOMIC & SOCIAL IMPACTS

TRANSFORMATION OF SKILL PROFILES

BIG DATA IS A LARGE
COLLECTION OF INFORMATION
FROM DIFFERENT SOURCES
THAT IS OFTEN COLLECTED IN
REAL TIME. ANALYTICS
INVOLVES ANALYSING THIS
DATA TO DISCOVER PATTERNS
AND GAIN INSIGHTS FOR
DECISION-MAKING.

BIG DATA & ANALYTICS: APPLICATIONS

FRAUD DETECTION

PERSONALIZED NETWORK
CUSTOMER OPTIMISATION
EXPERIENCE

TELECOMS & BIG DATA

BIG DATA AND ANALYTICS EMPOWER TELCOS TO ENHANCE CUSTOMER EXPERIENCES, OPTIMIZE NETWORK PERFORMANCE, AND MAKE DATA-DRIVEN DECISIONS FOR IMPROVED SERVICE AND OPERATIONAL EFFICIENCY.

SUSTAINABILITY THROUGH BIG DATA

RESOURCE AND ENERGY OPTIMISATION

IMPROVED MACHINES AND INFRASTRUCTURE

SUSTAINABLE INFRASTRUCTURE PLANNING

ECONOMIC & SOCIAL IMPACTS

REQUIREMENT FOR DATA ANALYSIS SKILLS

INCREASED REMOTE WORK PRACTICES

NEED TO ENSURE PRIVACY & ETHICS

EDGE COMPUTING

DEFINITION

EDGE COMPUTING IS A METHOD WHERE DATA PROCESSING AND ANALYSIS HAPPEN NEAR THE LOCATION WHERE DATA IS GENERATED, INSTEAD OF IN CENTRALIZED DATA CENTERS OR CLOUDS

EDGE COMPUTING: APPLICATIONS

TELECOMS & EDGE COMPUTING

EDGE COMPUTING ENABLES TELCOS TO PROCESS DATA CLOSER TO THE SOURCE, SIGNIFICANTLY REDUCING LATENCY, ENHANCING NETWORK EFFICIENCY, AND SUPPORTING THE DEVELOPMENT OF ADVANCED SERVICES LIKE IOT, AR, AND VR.

SUSTAINABILITY THROUGH EDGE COMPUTING

INCREASED ENERGY EFFICIENCY

DATA CENTRE CONSOLIDATION

RETROFITTING POSSIBILITIES

ECONOMIC & SOCIAL IMPACTS

TRANSFORMATION OF SKILL REQUIREMENTS

PATHWAY TO DIGITAL INFRASTRUCTURE

DEFINITION

TO RADIO ACCESS NETWORKS,
EMPLOYING ADVANCED
CONFIGURATIONS AND OPEN,
SOFTWARE-CENTRIC SOLUTIONS
TO ENHANCE FLEXIBILITY &
EFFICIENCY IN
TELECOMMUNICATIONS
NETWORKS

xRAN: APPLICATIONS

EASIER UPGRADES

NETWORK FLEXIBILITY

IMPROVED EFFICIENCY

TELECOMS & xRAN

TO MEET EVOLVING DEMANDS AND TECHNOLOGICAL STANDARDS.

SUSTAINABILITY THROUGH XRAN

RESOURCE OPTIMISATION THROUGH RIC (RAN INTELLIGENT CONTROLLERS)

ENERGY EFFICIENCY THROUGH MIMO

ECONOMIC & SOCIAL IMPACTS

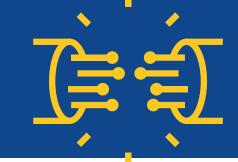
TRANSFORMATION OF SKILL REQUIREMENTS

REDUCED OWNERSHIP COSTS

OPTIC FIBRE USES SPECIAL CABLES MADE OF GLASS OR PLASTIC TO SEND DATA USING LIGHT SIGNALS. IT AIMS TO SUBSTITUTE METAL CABLES BECAUSE IT CAN HANDLE MORE DATA, MAKES TRANSMISSION SIGNIFICANTLY FASTER, KEEPS SIGNALS SAFE, AND IS 'FUTURE-PROOF'.

OPTIC FIBRE: APPLICATIONS

HIGH-SPEED INTERNET PROVISION


VERY HIGH-CAPACITY NETWORKS (VHCN)

DELIVERY
THROUGH GPON

LAST-MILE CONNECTIVITY

TELECOMS & OPTIC FIBRE

OPTIC FIBRE PLAYS A PIVOTAL ROLE FOR TELCOS BY ENABLING THEM TO PROVIDE HIGH-SPEED INTERNET CONNECTIVITY AND DEVELOP ADVANCED NETWORK INFRASTRUCTURES TO MEET THE GROWING DEMAND FOR DIGITAL SERVICES.

INCREASED EFFICIENCY AND DURABILITY